Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;20(1):51-3.
doi: 10.1038/1706.

Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency

Affiliations

Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency

J Reiss et al. Nat Genet. 1998 Sep.

Abstract

All molybdoenzymes other than nitrogenase require molybdopterin as a metal-binding cofactor. Several genes necessary for the synthesis of the molybdenum cofactor (MoCo) have been characterized in bacteria and plants. The proteins encoded by the Escherichia coli genes moaA and moaC catalyse the first steps in MoCo synthesis. The human homologues of these genes are therefore candidate genes for molybdenum cofactor deficiency, a rare and fatal disease. Using oligonucleotides complementary to a conserved region in the moaA gene, we have isolated a human cDNA derived from liver mRNA. This transcript contains an open reading frame (ORF) encoding the human moaA homologue and a second ORF encoding a human moaC homologue. Mutations can be found in the majority of MoCo-deficient patients that confirm the functional role of both ORFs in the corresponding gene MOCS1 (for 'molybdenum cofactor synthesis-step 1'). Northern-blot analysis detected only full-length transcripts containing both consecutive ORFs in various human tissues. The mRNA structure suggests a translation reinitiation mechanism for the second ORF. These data indicate the existence of a eukaryotic mRNA, which as a single and uniform transcript guides the synthesis of two different enzymatic polypeptides with disease-causing potential.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources