Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;286(3):1333-40.

Interaction of 2',2'-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells

Affiliations
  • PMID: 9732397

Interaction of 2',2'-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells

T Burke et al. J Pharmacol Exp Ther. 1998 Sep.

Abstract

The uptake of [3H]formycin B by Ehrlich ascites tumor cells was examined in both normal Na+ buffer (physiological) and nominally Na+-free buffer (iso-osmotic replacement with Li+). These studies were conducted to further characterize the equilibrative nucleoside transporter subtypes of Ehrlich cells and to assess the contribution of Na+-dependent concentrative transport mechanisms to the cellular accumulation of nucleoside analogues by these cells. Formycin B is poorly metabolized by mammalian cells and, hence, can be used as a substrate to measure transport kinetics in energetically competent cells. Initial studies established that formycin B inhibited [3H]uridine uptake by the ei (equilibrative inhibitor-insensitive) and es (equilibrative inhibitor-sensitive) transporters of Ehrlich cells with Ki values of 48 +/- 28 and 277 +/- 25 microM, respectively. Similarly, [3H]formycin B had Km values of 111 +/- 52 and 635 +/- 147 microM for uptake by the ei and es transporters, respectively. When assays were conducted in the presence of Na+, plus 100 nM nitrobenzylthioinosine to prevent efflux via the es transporters, the intracellular concentration of [3H]formycin B exceeded the initial medium concentration by more than 3-fold, indicating the activity of a Na+-dependent transporter. Interestingly, the initial rate of uptake of [3H]formycin B was significantly higher in the Li+ buffer (es-mediated Vmax = 65 +/- 10 pmol/microliter . sec) than in the Na+ buffer (Vmax = 8.4 +/- 0.9 pmol/microliter . sec); this may reflect trans-acceleration of [3H]formycin B uptake by elevated intracellular adenosine levels resulting from the low Na+ environment. This model was then used to assess the interaction of gemcitabine (2',2'-difluorodeoxycytidine) with the equilibrative and concentrative nucleoside transporters. Gemcitabine, which has shown considerable potential for the treatment of solid tumors, was a relatively poor inhibitor of [3H]formycin B uptake via the equilibrative transporters (IC50 approximately 400 microM). In contrast, gemcitabine was a potent inhibitor of the Na+-dependent nucleoside transporter of Ehrlich cells (IC50 = 17 +/- 5 nM). These results suggest that the cellular expression/activity of Na+-dependent nucleoside transporters may be an important determinant in gemcitabine cytotoxicity and clinical efficacy.

PubMed Disclaimer

Publication types

LinkOut - more resources