Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul-Aug;19(4):311-6.
doi: 10.1016/s0197-4580(98)00067-0.

Attenuation of age-dependent oxidative damage to DNA and protein in brainstem of Tg Cu/Zn SOD mice

Affiliations

Attenuation of age-dependent oxidative damage to DNA and protein in brainstem of Tg Cu/Zn SOD mice

F Cardozo-Pelaez et al. Neurobiol Aging. 1998 Jul-Aug.

Abstract

Age-dependent accumulation of oxidative DNA and protein damage in brainstem and striatum was assessed in normal and transgenic (tg) mice which overexpress human Cu/Zn superoxide dismutase (h-SOD1). A marker of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine (oxo8dG), was measured at 3, 12, and 18 months of age in control and tg mice. Cu/Zn SOD, but not MnSOD, activities in brainstems and striata from tg mice were increased compared to controls at all ages. At 18 months, oxo8dG levels were increased by 58% in brainstem and by 21% in striatum of control mice. In the tg mice, brainstem and striatal oxo8dG levels were increased to a lesser extent than in the corresponding controls. Protein oxidation (carbonyl content), was increased by 59% at 18 months in control brainstem, but not in striatum, and the increase was significantly attenuated in the tg mice. In summary, oxidative damage to DNA and protein increased with age in brainstem (and to a lesser extent in striatum), and augmented Cu/Zn SOD activity modified the extent of DNA and protein damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources