Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 18;273(38):24708-14.
doi: 10.1074/jbc.273.38.24708.

Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo

Affiliations
Free article

Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo

U Grawunder et al. J Biol Chem. .
Free article

Abstract

The XRCC4 gene is required for the repair of DNA double-strand breaks in mammalian cells. Without XRCC4, cells are hypersensitive to ionizing radiation and deficient for V(D)J recombination. It has been demonstrated that XRCC4 binds and stimulates DNA ligase IV, which has led to the hypothesis that DNA ligase IV is essential for both of these processes. In this study deletion mutants of XRCC4 were tested for their ability to associate with DNA ligase IV in vitro and for their ability to reconstitute XRCC4-deficient cells in vivo. We find that a central region of XRCC4 from amino acids 100-250 is necessary for DNA ligase IV binding and that deletions within this region functionally inactivates XRCC4. Deletions within the C-terminal 84 amino acids neither affect DNA ligase IV binding nor the in vivo function of XRCC4. The correlation between the ability or inability of XRCC4 to bind DNA ligase IV and its ability or failure to reconstitute wild-type DNA repair in vivo, respectively, demonstrates for the first time that the physical interaction with DNA ligase IV is crucial for the in vivo function of XRCC4. Deletions within the N-terminal 100 amino acids inactivate XRCC4 in vivo but leave DNA ligase IV binding unaffected. This indicates further DNA ligase IV-independent functions of XRCC4.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources