Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 14;805(1-2):104-15.
doi: 10.1016/s0006-8993(98)00673-8.

Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists

Affiliations

Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists

S R Selvaratnam et al. Brain Res. .

Abstract

The ontogeny of the noradrenergic receptor subtypes modulating hypoglossal (XII) nerve inspiratory output was characterized. Noradrenergic agents were locally applied over the XII nucleus of rhythmically active medullary slice preparations isolated from mice between zero and 13 days of age (P0-P13) and the effects on XII inspiratory burst amplitude quantified. The alpha1 receptor agonist phenylephrine (PE, 0.1-10 microM) produced a dose-dependent, prazosin-sensitive (0.1-10 microM) increase in XII nerve inspiratory burst amplitude. The magnitude of this potentiation increased steadily from a maximum of 15+/-8% in P0 mice to 134+/-4% in P12-P13 mice. The beta receptor agonist isoproterenol (0.01-1.0 mM) produced a prazosin-insensitive, propranolol-sensitive potentiation of XII nerve burst amplitude. The isoproterenol-mediated potentiation increased with development from 27+/-5% in P0-P1 slices, to 37+/-3% in P3 slices and 45+/-4% in P9-P10 slices. The alpha2 receptor agonist clonidine (1 mM) reduced XII nerve inspiratory burst amplitude in P0-P3 slices by 29+/-5%, but had no effect on output from P12-P13 slices. An alpha2 receptor-mediated inhibition of inspiratory activity in neonates (P0-P3) was further supported by a 19+/-3% reduction in XII nerve burst amplitude when norepinephrine (NE, 100 microM) was applied in the presence of prazosin (10 microM) and propranolol (100 microM). Results indicate that developmental increases in potentiating alpha1 and, to a lesser extent, beta receptor mechanisms combine with a developmentally decreasing inhibitory mechanism, most likely mediated by alpha2 receptors, to determine the ontogenetic time course by which NE modulates XII MN inspiratory activity.

PubMed Disclaimer

Publication types

LinkOut - more resources