Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 18;282(2):241-54.
doi: 10.1006/jmbi.1998.2027.

In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli

Affiliations

In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli

S A Joyce et al. J Mol Biol. .

Abstract

In Bacilli, ribosomes or 30 S ribosomal subunits that are stalled or bound on mRNAs can stabilize downstream regions, hence the view that the degradation machinery scans mRNAs from their 5' end. In E. coli, several mRNAs can also be stabilized by secondary structures involving their 5' end. To test whether a bound 30 S subunit can act as a 5' stabilizer in E. coli, we compare here the stabilities of two untranslated variants of the lacZ mRNA, the decay of which is controlled by RNase E. In the first variant, a 35 nt region including the Ribosome Binding Site (RBS) is deleted, whereas in the second it is replaced by an 11 nt-long Shine-Dalgarno (SD) sequence lacking an associated start codon. In the latter variant, an 80 nt fragment encompassing the SD and extending up to the mRNA 5' end was stable in vivo (t1/2>one hour), reflecting 30 S binding. Yet, the full-length message was not more stable than when the SD was absent, although two small decay intermediates retaining the 5' end appear somewhat stabilized. A third variant was constructed in which the RBS is replaced by an insert which can fold back onto the lac leader, creating a putative hairpin involving the mRNA 5' end. The fragment corresponding to this hairpin was stable but, again, the full-length message was not stabilized. Thus, the untranslated lacZ mRNA cannot be protected against RNase E by 5' stabilizers, suggesting that mRNA scanning is not an obligate feature of RNase E-controlled degradation. Altogether, these results suggest important differences in mRNA degradation between E. coli and B. subtilis. In addition, we show that mRNA regions involved in stable hairpins or Shine-Dalgarno pairings can be metabolically stable in E. coli.

PubMed Disclaimer

Publication types