Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;21(10):1309-16.
doi: 10.1002/(sici)1097-4598(199810)21:10<1309::aid-mus10>3.0.co;2-x.

Task-dependent facilitation of motor evoked potentials during dynamic and steady muscle contractions

Affiliations

Task-dependent facilitation of motor evoked potentials during dynamic and steady muscle contractions

Z Arányi et al. Muscle Nerve. 1998 Oct.

Abstract

Task-dependent differences in the facilitation of motor evoked potentials (MEPs) following cortex stimulation were studied in a proximal (deltoid) and a distal muscle (abductor digiti minimi; ADM) in 23 healthy subjects during both dynamic and steady contractions of the target muscle under isometric and under nonisometric conditions. In the deltoid, MEP amplitudes were significantly greater if stimulation was performed during dynamic contractions than during steady contractions, despite equal background electromyographic levels just prior to the stimulus. The same task-specific extra facilitation of deltoid MEP amplitudes was also found with magnetic stimulation of the brain stem instead of the cortex in 3 subjects. In the ADM, no such task-dependent extra facilitation of MEPs during dynamic contractions was found. It is concluded that in the deltoid, during dynamic contractions, a greater proportion of the spinal motoneurons is close to depolarization threshold (greater "subliminal fringe") whereas the number of firing motoneurons is similar to that during steady contraction. The lack of task-dependent extra facilitation of MEPs in the ADM is explained by the predominant recruitment principle for force gradation in small hand muscles, which is in contrast to the predominant frequency principle used in proximal muscles.

PubMed Disclaimer

Publication types

LinkOut - more resources