Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;7(11):1661-9.
doi: 10.1093/hmg/7.11.1661.

The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats

Affiliations

The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats

M Bayés et al. Hum Mol Genet. 1998 Oct.

Abstract

Anhidrotic ectodermal dysplasia (EDA) is an X-linked recessive disorder which affects ectodermal structures. A cDNA encoding a 135 amino acid protein with mutations in 5-10% of EDA patients has been reported. We have built up a complete splicing map of the EDA gene and characterized the longest and what most probably represents the full-length EDA transcript, EDA-A. It encodes a 391 amino acid transmembrane protein with a short collagenous domain, (Gly-X-Y)19, and is highly homologous to the protein mutated in Tabby mice (Ta-A). Four new transcripts that code for truncated proteins lacking the collagenous domain were also detected. The splice variants show different expression patterns in eight tissues analyzed, suggesting a regulatory mechanism for gene expression. The EDA-A form of the protein is transported to the cell membrane and induces rounding of the cells, properties also associated with the 135 amino acid isoform. We have determined the genomic organization and the exon-intron boundaries of the EDA gene. SSCP analysis of the nine exons corresponding to EDA-A allowed the identification of mutations in 12 out of 15 EDA patients. Interestingly, three mutations removed either two or four of the Gly-X-Y repeats without interrupting the reading frame, thus suggesting a functional role for the collagenous domain. Our results will allow mutation diagnostics in the majority of patients.

PubMed Disclaimer

Publication types

LinkOut - more resources