Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 15;102(6):1152-60.
doi: 10.1172/JCI3236.

Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction

Affiliations

Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction

L Arbibe et al. J Clin Invest. .

Abstract

Lyso-phospholipids exert a major injurious effect on lung cell membranes during Acute Respiratory Distress Syndrome (ARDS), but the mechanisms leading to their in vivo generation are still unknown. Intratracheal administration of LPS to guinea pigs induced the secretion of type II secretory phospholipase A2 (sPLA2-II) accompanied by a marked increase in fatty acid and lyso-phosphatidylcholine (lyso-PC) levels in the bronchoalveolar lavage fluid (BALF). Administration of LY311727, a specific sPLA2-II inhibitor, reduced by 60% the mass of free fatty acid and lyso-PC content in BALF. Gas chromatography/mass spectrometry analysis revealed that palmitic acid and palmitoyl-2-lyso-PC were the predominant lipid derivatives released in BALF. A similar pattern was observed after the intratracheal administration of recombinant guinea pig (r-GP) sPLA2-II and was accompanied by a 50-60% loss of surfactant phospholipid content, suggesting that surfactant is a major lung target of sPLA2-II. In confirmation, r-GP sPLA2-II was able to hydrolyze surfactant phospholipids in vitro. This hydrolysis was inhibited by surfactant protein A (SP-A) through a direct and selective protein-protein interaction between SP-A and sPLA2-II. Hence, our study reports an in vivo direct causal relationship between sPLA2-II and early surfactant degradation and a new process of regulation for sPLA2-II activity. Anti-sPLA2-II strategy may represent a novel therapeutic approach in lung injury, such as ARDS.

PubMed Disclaimer

References

    1. Biochemistry. 1996 Jul 16;35(28):9003-6 - PubMed
    1. N Engl J Med. 1996 May 30;334(22):1417-21 - PubMed
    1. Biochem J. 1997 Feb 1;321 ( Pt 3):737-41 - PubMed
    1. J Immunol. 1997 Jul 1;159(1):391-400 - PubMed
    1. Can J Biochem Physiol. 1959 Aug;37(8):911-7 - PubMed

MeSH terms