Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 15;6(8):971-82.
doi: 10.1016/s0969-2126(98)00099-9.

Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 A resolution: the role of Glu88 in the unique substrate-recognition mechanism

Affiliations
Free article

Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 A resolution: the role of Glu88 in the unique substrate-recognition mechanism

K Imada et al. Structure. .
Free article

Abstract

Background: 3-Isopropylmalate dehydrogenase (IPMDH) and isocitrate dehydrogenase (ICDH) belong to a unique family of bifunctional decarboxylating dehydrogenases. Although the ICDH dimer catalyzes its reaction under a closed conformation, known structures of the IPMDH dimer (without substrate) adopt a fully open or a partially closed form. Considering the similarity in the catalytic mechanism, the IPMDH dimer must be in a fully closed conformation during the reaction. A large conformational change should therefore occur upon substrate binding.

Results: We have determined the crystal structure of IPMDH from Thiobacillus ferrooxidans (Tf) complexed with 3-isopropylmalate (IPM) at 2.0 A resolution by the molecular replacement method. The structure shows a fully closed conformation and the substrate-binding site is quite similar to that of ICDH except for a region around the gamma-isopropyl group. The gamma group is recognized by a unique hydrophobic pocket, which includes Glu88, Leu91 and Leu92 from subunit 1 and Val193' from subunit 2.

Conclusions: A large movement of domain 1 is induced by substrate binding, which results in the formation of the hydrophobic pocket for the gamma-isopropyl moiety of IPM. A glutamic acid in domain 1, Glu88, participates in the formation of the hydrophobic pocket. The C beta and C gamma atoms of Glu88 interact with the gamma-isopropyl moiety of IPM and are central to the recognition of substrate. The acidic tip of Glu88 is likely to interact with the nicotinamide mononucleotide (NMN) ribose of NAD+ in the ternary complex. This structure clearly explains the substrate specificity of IPMDH.

PubMed Disclaimer

Associated data

LinkOut - more resources