Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;42(1):85-95.
doi: 10.1002/(sici)1097-4636(199810)42:1<85::aid-jbm11>3.0.co;2-n.

Peptide surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) enhances its interaction with central nervous system neurons

Affiliations

Peptide surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) enhances its interaction with central nervous system neurons

Y W Tong et al. J Biomed Mater Res. 1998 Oct.

Abstract

Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film surfaces were chemically surface modified to introduce one of three laminin adhesive peptides: GYIGSR, GRGDS, or SIKVAV. FEP film surfaces were first reduced with sodium naphthalide to introduce surface carbon-carbon double bonds at two reaction conditions: 20 min at -78 degrees C, and 3 h at 25 degrees C. Scanning electron microscopy and atomic force microscopy indicated that surface topography was unaffected by the reaction conditions. Reduced FEP film surfaces were further modified to introduce hydroxyl groups via hydroboration/oxidation or carboxylic acid groups via oxidation. The hydroxyl (FEP-CHxOH) and carboxylic acid (FEP-COOH) functionalized surfaces provided reactive handles for peptide coupling using tresyl chloride. Surface elemental composition data, determined from X-ray protoelectron spectroscopy, indicated that equivalent amounts of GYIGSR, GRGDS, and SIKVAV were introduced. Two additional coupling reagents, SMCC and TSU, were compared to tresyl chloride for the coupling of radio-labeled tyrosine of GYIGSR. Between 8 and 150 fmol/cm2 of peptide was introduced to the hydroxyl and carboxylic acid functionalized surfaces, with the tresyl coupling reagent showing the greatest amount of peptide incorporated. The tresyl-coupled peptide-modified surfaces were compared in terms of the response of primary, embryonic hippocampal neurons plated from serum-free medium for 4 days. The number and length of neurites extending from the cell bodies were averaged over 50 cells after 1 and 4 days FEP-CHxO-peptide surfaces had either a greater or equivalent hippocampal neuron interaction than the corresponding FEP-COO-peptide surfaces. All peptide-functionalized surfaces had a greater hippocampal neuron interaction than the corresponding FEP-CHxOH, FEP-COOH, and FEP controls after 4 days underlying the importance of the peptides over hydrophilic or hydrophobic surfaces. After 4 days differences in neurite extension were evident among the peptide-functionalized surfaces, with the longest neurites observed on the SIKVAV-functionalized surfaces.

PubMed Disclaimer

Publication types

LinkOut - more resources