Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Aug;253(4):105-12.
doi: 10.1002/(SICI)1097-0185(199808)253:4<105::AID-AR5>3.0.CO;2-S.

Progress in the study of brain evolution: from speculative theories to testable hypotheses

Affiliations
Free article
Review

Progress in the study of brain evolution: from speculative theories to testable hypotheses

G F Striedter. Anat Rec. 1998 Aug.
Free article

Abstract

Darwin's theory of evolution raised the question of how the human brain differs from that of other animals and how it is the same. Early students of brain evolution had constructed rather grand but speculative theories which stated that brains evolved in a linear manner, from fish to man and from simple to complex. These speculations were soundly refuted, however, as contemporary comparative neurobiologists used powerful new techniques and methodologies to discover that complex brains have evolved several times independently among vertebrates (e.g., within teleost fishes and birds) and that brain complexity has actually decreased in the lineages leading to modern salamanders and lungfishes. Moreover, the old idea that brains evolved by the sequential addition of new components has now been replaced by the working hypothesis that brains generally evolve by the divergent modification of preexisting parts. Speculative theories have thus been replaced by testable hypotheses, and current efforts in the field are aimed at making phylogenetic hypotheses even more testable. Particularly promising new directions for comparative neurobiology include (1) the integration of comparative neuroanatomy with comparative embryology and developmental genetics in order to test phylogenetic hypotheses at a mechanistic level, (2) research into how evolutionary changes in the structure of neural circuits are related to evolutionary changes in circuit function and animal behavior, and (3) the analysis of independently evolved similarities to discover general rules about how brains may or may not change during the course of evolution.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources