Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;39(9):1852-61.

Resistance of chylomicron and VLDL remnants to post-heparin lipolysis in ApoE-deficient mice: the role of apoE in lipoprotein lipase-mediated lipolysis in vivo and in vitro

Affiliations
  • PMID: 9741698
Free article

Resistance of chylomicron and VLDL remnants to post-heparin lipolysis in ApoE-deficient mice: the role of apoE in lipoprotein lipase-mediated lipolysis in vivo and in vitro

E Zsigmond et al. J Lipid Res. 1998 Sep.
Free article

Abstract

The interaction of lipoprotein lipase (LPL) with triglyceride-rich lipoproteins is governed by a number of factors, such as apolipoprotein (apo) C-II. The role of apoE in lipolysis is controversial. We made the unexpected observation that apoE-deficient mice were resistant to heparin-induced lipolysis; this study aims at examining the underlying mechanism for this observation. Compared to wild-type mice, apoE-deficient mice had significantly higher very low density lipoprotein (VLDL) and chylomicron remnant (VLDL/CMR) concentrations and moderately lower lipase activity (15.5 +/- 1.3 mU/ml vs. 22.9 +/- 2.5 mU/ml). Unlike in wild-type mice where the injection of heparin reduced total plasma triglycerides by 50% and VLDL/CMR triglycerides by over 95%, the injection of heparin into apoE-deficient mice did not significantly affect plasma lipids. Similarly, in vitro, purified human LPL (hLPL) almost completely hydrolyzed VLDL/CMR isolated from wild-type mice, but had no effect on VLDL/CMR from apoE-deficient mice. However, when the amount of apoE-deficient VLDL/CMR was reduced to an equivalent level as in wild-type mice, LPL hydrolyzed 94% of VLDL/CMR triglycerides. In order to increase the ratio of LPL to VLDL/CMR in vivo, we injected an adenovirus containing the human LPL cDNA into apoE-deficient mice, which produced marked liver-specific overexpression of LPL and significant reduction of VLDL/CMR (93%) and total plasma triglyceride concentrations (87%). Thus, apoE is not required for LPL activity in vivo or in vitro. Under certain pathological conditions, such as severe hyperlipidemia, the LPL pathway may be saturated and efficient lipolysis can proceed only if the ratio of substrate particles to LPL is adjusted to a more normal range.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources