Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Sep;119(3):172-81.
doi: 10.1016/S0194-5998(98)70052-X.

Hair cells in mammalian utricles

Affiliations
Review

Hair cells in mammalian utricles

R A Eatock et al. Otolaryngol Head Neck Surg. 1998 Sep.

Abstract

Two morphological classes of mechanosensory cells have been described in the vestibular organs of mammals, birds, and reptiles: type I and type II hair cells. Type II hair cells resemble hair cells in other organs in that they receive bouton terminals from primary afferent neurons. In contrast, type I hair cells are enveloped by large cuplike afferent terminals called calyces. Type I and II cells differ in other morphological respects: cell shape, hair bundle properties, and more subtle ultrastructural features. Understanding the functional significance of these strikingly different morphological features has proved to be a challenge. Experiments that correlated the response properties of primary vestibular afferents with the morphologies of their afferent terminals suggested that the synapse between the type I hair cell and calyx ending is lower gain than that between a type II hair cell and a bouton ending. Recently, patch-clamp experiments on isolated hair cells have revealed that type I hair cells from diverse species have a large potassium conductance that is activated at the resting potential. As a consequence, the voltage responses generated by the type I hair cells in response to injected currents are smaller than those generated by type II hair cells. This may contribute to the lower gain of type I inputs to primary afferent neurons. Studies of neonatal mouse utricles show that the type I-specific potassium conductance is not present at birth but emerges during the first postnatal week, a period of morphological differentiation of type I and type II hair cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources