Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;15(1):15-25.
doi: 10.1046/j.1365-313x.1998.00172.x.

Domains of the TMV movement protein involved in subcellular localization

Affiliations
Free article

Domains of the TMV movement protein involved in subcellular localization

T W Kahn et al. Plant J. 1998 Jul.
Free article

Abstract

To identify and map functionally important regions of the tobacco mosaic virus movement protein, deletions of three amino acids were introduced at intervals of 10 amino acids throughout the protein. Mutations located between amino acids 1 and 160 abolished the capacity of the protein to transport virus from cell to cell, while some of the mutations in the C-terminal third of the protein permitted function. Despite extensive tests, no examples were found of intermolecular complementation between mutants, suggesting that function requires each movement protein molecule to be fully competent. Many of the mutants were fused to green fluorescent protein, and their subcellular localizations were determined by fluorescence microscopy in infected plants and protoplasts. Most mutants lost the ability to accumulate in one or more of the multiple subcellular sites targeted by wild-type movement protein, suggesting that specific functional domains were disrupted. The order in which accumulation at subcellular sites occurs during infection does not represent a targeting pathway. Association of the movement protein with microtubules or with plasmodesmata can occur in the absence of other associations. The region of the protein around amino acids 9-11 may be involved in targeting the protein to cortical bodies (probably associated with the endoplasmic reticulum) and to plasmodesmata. The region around residues 49-51 may be involved in co-alignment of the protein with microtubules. The region around residues 88-101 appears to play a role in targeting to both the cortical bodies and microtubules. Thus, the movement protein contains independently functional domains.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources