Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug;46(6):541-6.
doi: 10.1016/s0361-9230(98)00052-5.

Nitric oxide and prostaglandin E2 formation parallels blood-brain barrier disruption in an experimental rat model of bacterial meningitis

Affiliations

Nitric oxide and prostaglandin E2 formation parallels blood-brain barrier disruption in an experimental rat model of bacterial meningitis

D J Jaworowicz Jr et al. Brain Res Bull. 1998 Aug.

Abstract

During meningitis, the host produces a plethora of signaling agents as part of a coordinated defense mechanism against invading pathogens. Nitric oxide (NO) and prostaglandin E2 (PGE2) are two such inflammatory mediators produced in response to bacterial endotoxins. Disruption of the blood-brain barrier (BBB) is one of many pathophysiological consequences of meningitis. The present objective was to examine the time-course of NO and PGE2 production in relationship to BBB permeability alterations during experimentally-induced meningitis. Meningeal inflammation was elicited by intracisternal administration of the bacterial endotoxin, lipopolysaccharides (LPS; 200 microg), and NO, PGE2, and BBB integrity were monitored over the next 24 h. Meningeal NO production was assessed by headspace chemiluminescence; cerebrospinal fluid PGE2 was determined by enzyme-linked immunosorbent assay (ELISA) immunoassay; and BBB integrity was determined by the brain accumulation of 14C-sucrose. Similar time-course profiles for NO and PGE2 were observed, with a peak effect for both inflammatory mediators observed within 6-8 h after intracisternal LPS dosing. Statistically significant (p < 0.05) disruption of the BBB was observed in various brain regions. Strikingly similar temporal relationships were observed for NO and PGE2 production and BBB disruption. These results suggest the hypothesis that NO and PGE2 may act in conjunction to disrupt the BBB during experimental meningitis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources