Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug 21;433(3):201-4.
doi: 10.1016/s0014-5793(98)00910-7.

Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes

Affiliations
Free article

Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes

C Mailliot et al. FEBS Lett. .
Free article

Abstract

Tau proteins are the basic components of filaments that accumulate within neurons during neurofibrillary degeneration, a degenerating process with disease-specific phenotypes. This specificity is likely to be sustained by both phosphorylation state and isoform content of tau aggregates that form neuronal inclusions. In the present study, characterization of tau isoforms involved in neurofibrillary degeneration in Alzheimer's disease, Pick's disease, corticobasal degeneration and progressive supranuclear palsy was performed. Both analyses by immunoblotting using specific tau antibodies and cell transfection by tau isoform cDNAs allowed us to demonstrate the aggregation of (1) the six hyperphosphorylated tau isoforms in Alzheimer's disease, (2) tau isoforms without exon 10-encoding sequence in Pick's disease and (3) hyperphosphorylated exon 10-tau isoforms in corticobasal degeneration and progressive supranuclear palsy. Thus, neurofibrillary degeneration phenotypes are likely to be related to the phosphorylation of different combinations of tau isoforms (with and/or without exon 10-encoding sequence) in subpopulations of neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources