Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;107(4):247-54.
doi: 10.1007/s004120050304.

Meiotic pairing and segregation of translocation quadrivalents in yeast

Affiliations

Meiotic pairing and segregation of translocation quadrivalents in yeast

J Loidl et al. Chromosoma. 1998 Sep.

Abstract

Meiotic pairing and segregation were studied in three different heterozygous reciprocal translocation strains of the baker's yeast, Saccharomyces cerevisiae. Pachytene translocation quadrivalents were identified by a combination of immunofluorescence and fluorescence in situ hybridization and the karyotypes of meiotic products were determined by pulsed-field gel electrophoresis. The translocations differed with respect to the relative sizes of the chromosomes involved and the positions of translocation breakpoints, and produced translocation quadrivalents of widely different shapes. This allowed us to study the influence of the morphology of quadrivalents on their segregation behaviour. In all cases alternate predominated over adjacent segregation. 3:1 disjunction of chromosomes was more frequent when translocation breakpoints were close to the centromeres. If a translocation breakpoint was distant from the centromere, the occurrence of an intervening chiasma influenced the pattern of segregation. In general, quadrivalent formation and segregation resembled the behaviour of translocation heterozygotes in most higher eukaryotes. We therefore conclude that, although chromosome condensation does not occur in yeast metaphase, centromere orientation and chromosome disjunction are governed in a way similar to that of higher eukaryotes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources