Phenotype modulation in primary cultures of aortic smooth muscle cells from streptozotocin-diabetic rats
- PMID: 9745713
- DOI: 10.1111/j.1432-0436.1998.00225.x
Phenotype modulation in primary cultures of aortic smooth muscle cells from streptozotocin-diabetic rats
Abstract
Diabetes mellitus is a major risk factor for atherosclerosis. In atherosclerotic lesions, arterial smooth muscle cells (SMC) change from a contractile to a synthetic phenotype characterized by active proliferation. A similar phenotype modulation occurs in vitro when isolated arterial SMC are grown in culture and is characterized by both changes in cell morphology and a typical switch in actin isoform expression. In this study, we examined the influence of streptozotocin (STZ)-induced diabetes on the differentiation state and the phenotype modulation of cultured rat aortic SMC. We used transmission electron microscopy to study the fine structure of STZ-diabetic and non-diabetic SMC in primary culture and immunological methods for the determination of the proportions of alpha-smooth muscle actin (alpha-SM) and nonmuscle beta-actin (beta-NM) isoforms. Cultured STZ-diabetic SMC exhibited a large cytoplasmic volume, rich in rough endoplasmic reticulum, when compared with cultured non-diabetic SMC. alpha-SM, organized in stress fibers, was less homogeneously and abundantly distributed and by contrast, beta-NM was more abundant in STZ-diabetic than in non-diabetic SMC. Cytofluorimetric analyses demonstrated that the alpha-SM content was reduced in freshly STZ-diabetic SMC. Furthermore, during logarithmic growth of cultured SMC, the decrease of alpha-SM was more important in STZ-diabetic than in non-diabetic SMC. Immunoblotting of actin isoforms confirmed that expression of beta-NM was more important in STZ-diabetic than in non-diabetic SMC even in freshly isolated cells. The results suggest that SMC from STZ-diabetic rats express a more dedifferentiated state and undergo a more rapid phenotypic modulation in primary cultures than SMC from non-diabetic rats. Therefore, diabetes could induce changes in the phenotype of arterial SMC which might be associated with the onset or progression of the atherogenic process.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
