Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Aug-Oct;19(4-5):599-603.

In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines

Affiliations
  • PMID: 9745917

In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines

R B Parsons et al. Neurotoxicology. 1998 Aug-Oct.

Abstract

Cysteine (CYS) is a non-essential amino acid which elicits excitotoxic properties via the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor. CYS levels are known to be elevated in association with neurological disease such as Alzheimers Disease (AD) and Parkinsons Disease (PD). We have previously reported studies investigating the toxicity of CYS and its major metabolite cysteinesulfinic acid (CSA) to human neuronal cell lines in vitro and in continuation of this we now report the toxicity of other compounds (Homocysteic Acid, HCA; Homocysteine, HCYS; and Cysteic Acid, CA) in the CYS metabolic pathway. Three cell lines, all of human origin and derived from separate discrete areas of the brain were used in the neurotoxicity assays. Lactate dehydrogenase (LDH) release was assayed as a measure of cell death. The cell lines investigated showed varying degrees of toxic responses which were the reverse of those seen when they were exposed to CYS or CSA. The SK.N.SH (Neuroblastoma) cell line, which exhibits a high toxic response to CYS and CSA, gave a low toxic response to HCA and CA while the TE 671 (Medulloblastoma) cell line, which exhibits a low toxic response to CYS and CSA, showed a high toxic response to HCYS, HCA and CA. However, the U-87 MG (Glioblastoma) cell line, which has a median toxic response to CYS and CSA, also has median response to HCYS, HCA and CA. These results show that toxic responses are cell-type specific for CYS and its metabolites and this may be reflected in the patterns of neurodegeneration observed in such diseases as AD and PD. HCYS is selectively toxic to medulloblastoma cells; this may explain why high HCYS levels result in neural tube defects in prenatal humans, where the same cell-type is involved.

PubMed Disclaimer

Similar articles

Cited by

Publication types