Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;4(9):2265-72.

Combination E2F-1 and p53 gene transfer does not enhance growth inhibition in human squamous cell carcinoma of the head and neck

Affiliations
  • PMID: 9748148

Combination E2F-1 and p53 gene transfer does not enhance growth inhibition in human squamous cell carcinoma of the head and neck

D K Frank et al. Clin Cancer Res. 1998 Sep.

Abstract

Ample data exist contending that wild-type p53 and E2F-1 cooperate to mediate apoptosis, that E2F-1-mediated apoptosis is p53 dependent in some situations, and that E2F-1 can induce accumulation of p53 in mammalian cells. These data support the investigation of the biological consequences of combined wild-typep53 and E2F-1 overexpression in human squamous cell carcinoma of the head and neck (SCCHN) for the purpose of developing apoptosis-inducing molecular intervention strategies for the management of this devastating disease. The recombinant adenovirus (Ad) vectors Ad-p53 and Ad-E2F-1 were used for wild-type p53 and E2F-1 gene transfers, respectively, into SCCHN cell lines TU138 and TU167. SCCHN cells transduced with either p53, E2F-1, or both underwent in vitro growth analysis, which revealed that simultaneous p53 and E2F-1 gene transfer did not result in enhanced growth inhibition. To explain our growth assay findings on the basis of potential negative molecular interactions between E2F-1 and p53, Western and Northern blotting analyses were performed to investigate the differential expression of the downstream p53-transactivated genes, p21Waf1 and BAX, under various p53 and E2F-1 gene transfer conditions. Whereas Western immunoblotting demonstrated that E2F-1 antagonized p53 induction of p21Waf1 and BAX, Northern blotting revealed that this interference was pretranslationally regulated and p53 dependent. Coimmunoprecipitation assay confirmed that the wild-type p53 and E2F-1 gene products formed protein-protein complexes in our cell lines. Our in vitro data demonstrated that in SCCHN, E2F-1 interferes with induction of p53-transactivated genes, probably through the formation of protein-protein complexes. Simultaneous p53 and E2F-1 gene transfer is not therapeutically advantageous in this in vitro model of SCCHN.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms