Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Oct 1;1400(1-3):339-47.
doi: 10.1016/s0167-4781(98)00145-6.

Bacteriophage T4, a model system for understanding the mechanism of type II topoisomerase inhibitors

Affiliations
Review

Bacteriophage T4, a model system for understanding the mechanism of type II topoisomerase inhibitors

K N Kreuzer. Biochim Biophys Acta. .

Abstract

Bacteriophage T4 provides a simple model system for analyzing the mechanism of action of antitumor agents that inhibit DNA topoisomerases. The phage-encoded type II topoisomerase is sensitive to many of the same antitumor agents that inhibit mammalian type II topoisomerase, including m-AMSA, ellipticines, mitoxantrone and epipodophyllotoxins. Results from the T4 model system provided a convincing demonstration that topoisomerase is the physiological drug target and strong evidence that the drug-induced cleavage complex is important for cytotoxicity. The detailed molecular steps involved in cytotoxicity, and the mechanism of recombinational repair of inhibitor-induced DNA damage, are currently being analyzed using this model system. Studies with the T4 topoisomerase have also provided compelling evidence that topoisomerase inhibitors interact with DNA at the active site of the enzyme, with each class of inhibitor favoring a different subset of cleavage sites based on DNA sequence. Finally, analysis of drug-resistance mutations in the T4 topoisomerase have implicated certain regions of the protein in drug interaction and provided a strong link between the mechanism of action of the antibacterial quinolones, which inhibit DNA gyrase, and the various antitumor agents, which inhibit mammalian type II topoisomerase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources