Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;6(3):316-25.
doi: 10.1109/86.712230.

Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters

Affiliations

Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters

G Pfurtscheller et al. IEEE Trans Rehabil Eng. 1998 Sep.

Abstract

Electroencephalogram (EEG) recordings during right and left motor imagery can be used to move a cursor to a target on a computer screen. Such an EEG-based brain-computer interface (BCI) can provide a new communication channel to replace an impaired motor function. It can be used by, e.g., patients with amyotrophic lateral sclerosis (ALS) to develop a simple binary response in order to reply to specific questions. Four subjects participated in a series of on-line sessions with an EEG-based cursor control. The EEG was recorded from electrodes overlying sensory-motor areas during left and right motor imagery. The EEG signals were analyzed in subject-specific frequency bands and classified on-line by a neural network. The network output was used as a feedback signal. The on-line error (100%-perfect classification) was between 10.0 and 38.1%. In addition, the single-trial data were also analyzed off-line by using an adaptive autoregressive (AAR) model of order 6. With a linear discriminant analysis the estimated parameters for left and right motor imagery were separated. The error rate obtained varied between 5.8 and 32.8% and was, on average, better than the on-line results. By using the AAR-model for on-line classification an improvement in the error rate can be expected, however, with a classification delay around 1 s.

PubMed Disclaimer

Publication types

LinkOut - more resources