Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;54(3):948-63.

Assessing the sensitivity of regression results to unmeasured confounders in observational studies

Affiliations
  • PMID: 9750244

Assessing the sensitivity of regression results to unmeasured confounders in observational studies

D Y Lin et al. Biometrics. 1998 Sep.

Abstract

This paper presents a general approach for assessing the sensitivity of the point and interval estimates of the primary exposure effect in an observational study to the residual confounding effects of unmeasured variable after adjusting for measured covariates. The proposed method assumes that the true exposure effect can be represented in a regression model that includes the exposure indicator as well as the measured and unmeasured confounders. One can use the corresponding reduced model that omits the unmeasured confounder to make statistical inferences about the true exposure effect by specifying the distributions of the unmeasured confounder in the exposed and unexposed groups along with the effects of the unmeasured confounder on the outcome variable. Under certain conditions, there exists a simple algebraic relationship between the true exposure effect in the full model and the apparent exposure effect in the reduced model. One can then estimate the true exposure effect by making a simple adjustment to the point and interval estimates of the apparent exposure effect obtained from standard software or published reports. The proposed method handles both binary response and censored survival time data, accommodates any study design, and allows the unmeasured confounder to be discrete or normally distributed. We describe applications on two major medical studies.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources