Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Nov;36(11 Pt. 2):4307-18.

Role of nonhistone chromosomal proteins in the regulation of histone gene expression

  • PMID: 975064

Role of nonhistone chromosomal proteins in the regulation of histone gene expression

G S Stein et al. Cancer Res. 1976 Nov.

Abstract

Histone gene expression was studied during the cell cycle of continuously dividing HeLa S3-cells and following stimulation of confluent monolayers of WI-38 human diploid fibroblasts to proliferate. The presence of histone messenger RNA (mRNA) sequences was assayed by hybridization to a 3H-labeled single-stranded DNA complementary to histone mRNA's. In HeLa S3-cells, histone mRNA sequences were found in the nucleus and associated with polyribosomes during S phase but not during G1. Transcripts of S-phase chromatin contained histone mRNA sequences but those of G1 chromatin did not. Similarly, in WI-38 cells association of histone mRNA sequences with polyribosomes and transcription of histone mRNA sequences from chromatin parallel DNA replication. Together these results suggest that the regulation of histone gene expression resides, at least in part, at the transcriptional level. Chromatin reconstitution studies provide evidence that nonhistone chromosomal proteins play a key role in activation of histone gene transcription during the period of the cell cycle when DNA is replicated. Phosphate groups associated with the S-phase nonhistone chromosomal proteins appear to be functionally involved in the control of histone gene readout. Although WI-38 human diploid fibroblasts transformed by SV40 exhibit morphological and biochemical modifications characteristic of neoplastic cells, transcription of histone mRNA sequences remains unaltered.

PubMed Disclaimer

Similar articles

Cited by

Publication types