Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 5;83(7):730-7.
doi: 10.1161/01.res.83.7.730.

Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+

Affiliations
Free article

Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+

A B Al-Mehdi et al. Circ Res. .
Free article

Abstract

We have previously demonstrated the generation of reactive oxygen species (ROS) in cultured bovine pulmonary artery endothelial cells (BPAECs) and in isolated perfused rat lungs exposed to high K+ and during global lung ischemia. The present study evaluates the NADPH oxidase pathway as a source of ROS in these models. ROS production, detected by oxidation of the fluorophore, dichlorodihydrofluorescein, increased 2.5-fold in BPAECs and 6-fold in rat or mouse lungs exposed to high (24 mmol/L) K+. ROS generation was markedly inhibited by diphenyliodonium, a flavoprotein inhibitor, and by the synthetic peptide PR-39, an inhibitor of NADPH oxidase assembly, whereas allopurinol had no effect. With ischemia (1 hour), ROS generation by rat and mouse lungs increased 7-fold; PR-39 showed concentration-dependent inhibition of ROS production, with 50% inhibition at 3 micromol/L PR-39. ROS production in lungs exposed to high K+ or ischemia was essentially abolished in mice with a "knockout" of gp91(phox), a membrane-localized cytochrome component of NADPH oxidase; increased ROS production by these lungs after anoxia/reoxygenation was similar to control. PR-39 also inhibited ischemia and the high K+-mediated increase in lung thiobarbituric acid reactive substance. Western blotting of BPAECs and immunocytochemistry of BPAECs and rat and mouse lungs showed the presence of p47phox, a cytoplasmic component of NADPH oxidase and the putative target for PR-39 inhibition. In situ fluorescence imaging in the intact lung demonstrated that the increased dichlorofluorescein fluorescence in these models of ROS generation was localized primarily to the pulmonary endothelium. These studies demonstrate that ROS production in lungs exposed to ischemia or high K+ results from assembly and activation of a membrane-associated NAPDH oxidase of the pulmonary endothelium.

PubMed Disclaimer

Publication types

MeSH terms