Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Apr;8(2):75-81.
doi: 10.1034/j.1600-0501.1997.080201.x.

Blood-filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes

Affiliations
Comparative Study

Blood-filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes

J Schmid et al. Clin Oral Implants Res. 1997 Apr.

Abstract

The aim of the present study was to evaluate the effect of natural deproteinized bone mineral on the temporal and spatial pattern of bone formation in a guided bone regeneration model system while using a bioresorbable membrane device. A periosteal skin flap was raised uncovering the calvaria of 20 rabbits. A stiff hemispherical dome made of polylactic acid was placed onto the roughened calvaria and anchored by screws. Prior to placement, the dome was either filled with peripheral blood (control group, 8 rabbits) or with blood and OsteoGraf/N-300 (test group, 12 rabbits). At 1 month, histologic sections revealed bone regeneration in both test and control domes to various degrees. In the test domes, bone height reached 78% (67-83) and bone volume was 11% (6-17), while in the control domes, bone height was 45% (14-67) and bone volume 6% (1-11). At 2 months, bone height was unchanged in the test group at 70% (67-83) and bone volume had only slightly increased to 16% (11-21). In the controls, height increased to 86% (60-100) and volume to 20% (9-27). Thus, in this model system, natural bone mineral fill contributed to accelerate initial bone neogenesis, while it did not contribute to increasing bone volume or bone height at later observation stages.

PubMed Disclaimer

Publication types

LinkOut - more resources