Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Sep;32(1-2):275-85.
doi: 10.1016/s0920-1211(98)00058-8.

Osmolarity, ionic flux, and changes in brain excitability

Affiliations
Review

Osmolarity, ionic flux, and changes in brain excitability

P A Schwartzkroin et al. Epilepsy Res. 1998 Sep.

Abstract

The majority of modern epilepsy research has focused on possible abnormalities in synaptic and intrinsic neuronal properties--as likely epileptogenic mechanisms as well as the targets for developing novel antiepileptic treatments. However, many other processes in the central nervous system contribute to neuronal excitability and synchronization. Regulation of ionic balance is one such set of critical processes, involving a complex array of molecules for moving ions into and out of brain cells--both neurons and glia. Alterations in extracellular-to-intracellular ion gradients can have both direct and indirect effects on neuronal discharge. We have found, for example, that when hippocampal slices are exposed to hypo-osmotic bathing medium, the cells not only swell, but there is also a significant increase in the amplitude of a delayed rectifier potassium current in inhibitory interneurons--an effect that may contribute to the increase in tissue excitability associated with hypo-osmolar treatments. In contrast, antagonists of the chloride co-transporter, furosemide or bumetanide, block epileptiform activity in both in vitro and in vivo preparations. This antiepileptic effect is presumably due to the drugs' ability to block chloride co-transport. Indeed, prolonged tissue exposure to low levels of extracellular chloride have a parallel action. These experiments indicate that manipulation of ionic balance may not only facilitate epileptiform activities, but may also provide insight into new therapeutic strategies to block seizures.

PubMed Disclaimer

Publication types