Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 16;273(42):27236-44.
doi: 10.1074/jbc.273.42.27236.

GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein

Affiliations
Free article

GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein

W S Nakonechny et al. J Biol Chem. .
Free article

Abstract

Our present understanding of the action of the chaperonins GroEL/S on protein folding is based primarily on in vitro studies, whereas the folding of proteins in the cellular milieu has not been as thoroughly investigated. We have developed a means of examining in vivo protein folding and assembly that utilizes the coat protein of bacteriophage P22, a naturally occurring substrate of GroEL/S. Here we show that amino acid substitutions in coat protein that cause a temperature-sensitive-folding (tsf) phenotype slowed assembly rates upon increasing the temperature of cell growth. Raising cellular concentrations of GroEL/S increased the rate of assembly of the tsf mutant coat proteins to nearly that of wild-type (WT) coat protein by protecting a thermolabile folding intermediate from aggregation, thereby increasing the concentration of assembly-competent coat protein. The rate of release of the tsf coat proteins from the GroEL/S-coat protein ternary complex was approximately 2-fold slower at non-permissive temperatures when compared with the release of WT coat protein. However, the rate of release of WT or tsf coat proteins at each temperature remained constant regardless of GroEL/S levels. Thus, raising the cellular concentration of GroEL/S increased the amount of assembly-competent tsf coat proteins not by altering the rates of folding but by increasing the probability of GroEL/S-coat protein complex formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources