Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Sep 1;47(1):1-15.
doi: 10.1016/s0361-9230(98)00062-8.

Morphological substrates underlying opioid, epinephrine and gamma-aminobutyric acid inhibitory actions in the rat locus coeruleus

Affiliations
Review

Morphological substrates underlying opioid, epinephrine and gamma-aminobutyric acid inhibitory actions in the rat locus coeruleus

E J Van Bockstaele. Brain Res Bull. .

Abstract

The locus coeruleus (LC) has been implicated in attentional processes related to orienting behaviors, learning and memory, anxiety, stress, the sleep-wake cycle, and autonomic control, as well as to contributing to the affective state. Direct activation of LC neurons causes desynchronization of the electroencephalogram, suggesting that the LC is an important modulator of the behavioral state. The LC has been an intensely studied neuronal system, as the physiology and pharmacology of this nucleus is well understood. This is mainly because of the similarity in neurochemical composition of LC cells which all contain norepinephrine in the rat. However, the homogeneity in neurotransmitter content in LC neurons is sharply contrasted by the heterogeneity of neurochemicals found in its afferent processes. Among these are axon terminals that contain inhibitory and excitatory amino acids, monoamines, and neuropeptides, many of which have been shown to exert differential physiological effects on LC discharge activity. Although much attention has focused on physiological activation of LC neurons, substantial evidence indicates that diverse afferents prominently inhibit noradrenergic cellular activity. Such inhibitory neurochemicals, which arise from local and extrinsic sources, include gamma-aminobutyric acid (GABA) and epinephrine as well as the neuropeptides methionine5-enkephalin and leucine5-enkephalin. Inhibitory transmission in the LC has widespread implications for norepinephrine release at diverse postsynaptic targets, and clinically useful pharmacological agents such as clonidine, an alpha2 adrenergic receptor agonist that potently inhibits the firing of LC neurons, alleviate some negative physical symptoms observed following withdrawal from opiates. In the present review, the synaptic and functional organization of selected inhibitory-type neurotransmitters in the LC obtained from immunoelectron microscopic data will be discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources