Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;32(4):1032-9.
doi: 10.1016/s0735-1097(98)00356-8.

Application of the proximal flow convergence method to calculate the effective regurgitant orifice area in aortic regurgitation

Affiliations
Free article

Application of the proximal flow convergence method to calculate the effective regurgitant orifice area in aortic regurgitation

C M Tribouilloy et al. J Am Coll Cardiol. 1998 Oct.
Free article

Abstract

Objectives: We sought to determine the reliability of the proximal isovelocity surface area (PISA) method for calculation of effective regurgitant orifice (ERO) of aortic regurgitation (AR).

Background: The ERO area can be calculated by the PISA method, but this method has not been validated in AR.

Methods: ERO calculation by the PISA method was undertaken prospectively in 71 consecutive patients with isolated AR and achieved in 64 and compared with two simultaneous reference methods (quantitative Doppler and quantitative two-dimensional echocardiography). In addition, this method was compared with angiography in 12 patients, with surgical assessment in 18 patients and with ventricular volumes in all patients.

Results: Good correlations between PISA and reference methods were obtained (both r=0.90, both p < 0.0001), but a trend toward underestimation of the ERO by the PISA method was noted (24+/-19 vs. 26+/-22 mm2 and 27+/-23 mm2, respectively, both p=0.04). However, this trend was confined to five patients with an obtuse flow convergence angle (>220 degrees), and on multivariate analysis this variable was the only independent determinant of underestimation of the ERO. In contrast, in 59 patients with a flat flow convergence (< or =220 degrees ), the PISA method, in comparison with reference methods, showed excellent correlations, with a narrow standard error of the estimate (r=0.95, SEE 5.4 mm2, and r=0.95, SEE 5.8 mm2; all p < 0.0001) and no trend toward underestimation (22+/-18 vs. 23+/-16 mm2, p=0.44, and vs. 23+/-18 mm2, p=0.34).

Conclusions: In patients with AR, the PISA method can be used to measure the ERO with reasonable feasibility. Underestimation of the ERO by PISA may occur in patients with an obtuse flow convergence angle. However, in most patients with appropriate flow convergence, PISA provides reliable measurement of the ERO of AR.

PubMed Disclaimer

Publication types

LinkOut - more resources