Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Jun;17(2):155-61.
doi: 10.1023/a:1006094117427.

Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy

Affiliations
Review

Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy

L Witte et al. Cancer Metastasis Rev. 1998 Jun.

Abstract

Biological evidence suggests that interference with the function of the angiogenic growth factor receptor VEGFR2 (flk1/KDR) is a particularly promising strategy to inhibit tumor-induced angiogenesis. Proof of concept was established by developing a monoclonal rat anti-mouse VEGFR2 antibody (DC101) and showing that it potently blocked the binding of VEGF to its receptor, inhibited VEGF-induced signaling, and strongly blocked tumor growth in mice through an anti-angiogenic mechanism. Since DC101 does not cross-react with the human VEGFR2 KDR, anti-KDR monoclonal antibodies were generated by standard hybridoma technology and by using phage display library. High affinity antibodies (Kd = 4.9 x 10(-10)-1.1 x 10(-9) M) were found with both approaches. The anti-KDR antibodies compete on an equimolar basis with VEGF for binding to KDR and inhibit with similar potency the VEGF-induced signaling and mitogenesis in human endothelial cells. Although these antibodies cannot be tested for in vivo efficacy in standard murine tumor models because of lack of species cross-reactivity, the similarity of their in vitro properties with those of DC101 suggests that they may be effective in blocking KDR function in vivo.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources