Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 1;56(7):831-9.
doi: 10.1016/s0006-2952(98)00228-7.

Preferential effects of nicotine and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-1-butanone on mitochondrial glutathione S-transferase A4-4 induction and increased oxidative stress in the rat brain

Affiliations

Preferential effects of nicotine and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-1-butanone on mitochondrial glutathione S-transferase A4-4 induction and increased oxidative stress in the rat brain

S V Bhagwat et al. Biochem Pharmacol. .

Abstract

We have investigated the in vivo effects of the tobacco-specific toxins nicotine and 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on antioxidant defense systems in the mitochondrial, microsomal, and cytosolic compartments of rat brain, lung, and liver. Nicotine induced maximum oxidative stress in brain mitochondria, as seen from a 1.9-fold (P < 0.001) increase in thiobarbituric acid-reactive substance (TBARS) and a 2-fold (P < 0.001) increase in glutathione S-transferase (GST) A4-4 (also referred to as rGST 8-8) activities. These changes were accompanied by a 25-40% increase in reactive oxygen species and a 20-30% decrease in alcohol dehydrogenase activities. The 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone-induced oxidative damage was apparent in the microsomal fraction of brain, lung, and liver, and it also increased 4-hydroxynonenal specific GST A4-4 activity in the brain and lung mitochondrial matrix fraction. The levels of microsomal thiobarbituric acid reactive substance, cytochrome P4502E1 activity, and reactive oxygen species were also increased significantly (P < 0.001) in all tissues. Both of these toxins induced the level of GST A4-4 mRNA in the brain, while they caused a marked reduction in the liver GST A4-4 mRNA pool. Additionally, the brain mitochondrial matrix showed a markedly higher level of 4-hydroxynonenal specific GST activity and mGST A4-4 antibody-reactive protein than did the cytosolic fraction. In conclusion, the present study provides evidence for the occurrence of GST A4-4 enzyme activity in mammalian mitochondria, in addition to demonstrating that both mitochondria and microsomes are intracellular targets for nicotine- and NNK-induced organ toxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources