Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 23;273(43):27945-52.
doi: 10.1074/jbc.273.43.27945.

MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae

Affiliations
Free article

MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae

G Colby et al. J Biol Chem. .
Free article

Abstract

Mutations in MTO1 express a respiratory defect only in the context of a mitochondrial genome with a paromomycin-resistance allele. This phenotype is similar to that described previously for mss1 mutants by Decoster, E., Vassal, A., and Faye, G. (1993) J. Mol. Biol. 232, 79-88. We present evidence that Mto1p and Mss1p are mitochondrial proteins and that they form a heterodimer complex. In a paromomycin-resistant background, mss1 and mto1 mutants are inefficient in processing the mitochondrial COX1 transcript for subunit 1 of cytochrome oxidase. The mutants also fail to synthesize subunit 1 and show a pleiotropic absence of cytochromes a, a3, and b. In vivo pulse labeling of an mto1 mutant, however, indicate increased rates of synthesis of other mitochondrial translation products. The respiratory defective phenotype of mto1 and mss1 mutants is not seen in a paromomycin-sensitive genetic background. The visible absorption spectra of such strains indicate a higher ratio of cytochromes b/a and elevated NADH- and succinate-cytochrome c reductase activities. To explain these phenotypic characteristics, we proposed that the Mto1p.Mss1p complex plays a role in optimizing mitochondrial protein synthesis in yeast, possibly by a proofreading mechanism.

PubMed Disclaimer

Publication types

MeSH terms