Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 23;273(43):28510-5.
doi: 10.1074/jbc.273.43.28510.

Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice

Affiliations
Free article

Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice

M D Williams et al. J Biol Chem. .
Free article

Abstract

This study characterizes mitochondria isolated from livers of Sod2(-/+) and Sod2(+/+) mice. A 50% decrease in manganese superoxide dismutase (MnSOD) activity was observed in mitochondria isolated from Sod2(-/+) mice compared with Sod2(+/+) mice, with no change in the activities of either glutathione peroxidase or copper/zinc superoxide dismutase. However, the level of total glutathione was 30% less in liver mitochondria of the Sod2(-/+) mice. The reduction in MnSOD activity in Sod2(-/+) mice was correlated to an increase in oxidative damage to mitochondria: decreased activities of the Fe-S proteins (aconitase and NADH oxidoreductase), increased carbonyl groups in proteins, and increased levels of 8-hydroxydeoxyguanosine in mitochondrial DNA. In contrast, there were no significant changes in oxidative damage in the cytosolic proteins or nuclear DNA. The increase in oxidative damage in mitochondria was correlated to altered mitochondrial function. A significant decrease in the respiratory control ratio was observed in mitochondria isolated from Sod2(-/+) mice compared with Sod2(+/+) mice for substrates metabolized by complexes I, II, and III. In addition, mitochondria isolated from Sod2(-/+) mice showed an increased rate of induction of the permeability transition. Therefore, this study provides direct evidence correlating reduced MnSOD activity in vivo to increased oxidative damage in mitochondria and alterations in mitochondrial function.

PubMed Disclaimer

Publication types

LinkOut - more resources