Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;24(3):346-51.

Carnosine and beta-alanine release is stimulated by glutamatergic receptors in cultured rat oligodendrocytes

Affiliations
  • PMID: 9775986

Carnosine and beta-alanine release is stimulated by glutamatergic receptors in cultured rat oligodendrocytes

A Bakardjiev. Glia. 1998 Nov.

Abstract

Oligodendrocytes obtained from rat brain 0-2 A progenitor cells and differentiated in culture take up beta-alanine and synthesize carnosine (beta-Ala-His). The present study was designed to determine whether carnosine and beta-alanine are released from such cultures in response to some stimuli. An evoked release of these substances was not observed when the cells were incubated with 1 mM glutamate or 0.3 mM kainate. Addition of 0.1 mM cyclothiazide (CTZ) to the corresponding stimulus was accompanied by a distinct peak of release consisting of both carnosine and beta-alanine. The efflux was blocked completely in the case of kainate and to 80% in the case of glutamate when 50 microM 6,7-dinitroquinoxaline-2,3 (1H,4H)-dion (DNQX) was added to the cells at the same time as the receptor agonist. An increase of the efflux was observed in the presence of Zn2+. This effect was concentration-dependent. Total substitution of NaCl in the efflux medium by LiCl caused only a partial reduction of the release. GABA or 55 mM KCl showed only negligible effect. A large release of carnosine and beta-alanine was observed when oligodendrocyte cultures were treated with Ca2+ ionophore A 23187. These results suggest that oligodendrocytes exhibit a glutamate receptor-mediated release of carnosine and beta-alanine. The release is dependent on elevated intracellular Ca2+ concentration.

PubMed Disclaimer

LinkOut - more resources