Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;40(1):77-89.
doi: 10.1016/s0162-3109(98)00033-2.

Effects of particulate and soluble (1-3)-beta-glucans on Ca2+ influx in NR8383 alveolar macrophages

Affiliations

Effects of particulate and soluble (1-3)-beta-glucans on Ca2+ influx in NR8383 alveolar macrophages

A C Mörk et al. Immunopharmacology. 1998 Jul.

Abstract

Particulate and soluble (1-3)-beta-glucans are effective in preventing infections by enhancing macrophage and neutrophil functions. However, the mechanisms triggering these enhanced cellular responses are essentially unknown. We recently demonstrated that zymosan, a particulate (1-3)-beta-glucan receptor agonist, caused an influx of Ca2+ in NR8383 rat alveolar macrophages (AMs) and a resulting increase in intracellular Ca2+ (Zhang et al., J. Leukoc. Biol. 62 (1997) 341-348). Since Ca2+ is important in mediating leukocyte responses, we investigated whether other (1-3)-beta-glucans also alter Ca2+ mobilization in AMs. Particulate and soluble (1-3)-beta-glucans derived from Saccharomyces cerevisiae were used in these studies. Like zymosan, particulate (1-3)-beta-glucan (WGPs) caused a concentration-dependent increase in [Ca2+]i, which was inhibited by removal of extracellular Ca2+ and by SKF96365, an inhibitor of receptor-operated Ca2+ channels. When three different soluble (1-3)-beta-glucans, with molecular weights of approximately 11,000, 150,000, and 1,000,000 Da, were tested alone for effects on Ca2+ responses, the low molecular weight (1-3)-beta-glucan produced no effect and the intermediate and high molecular weight (1-3)-beta-glucans caused only a small increase in [Ca2+]i. Interestingly, however, all three soluble (1-3)-beta-glucans could significantly reduce the Ca2+ responses induced by a subsequent exposure to either WGPs or zymosan. These results demonstrate that: 1) particulate (1-3)-beta-glucan activates Ca2+ influx in NR8383 macrophages through receptor-operated Ca2+ channels; 2) soluble (1-3)-beta-glucans do not strongly activate Ca2+ influx in these cells; and 3) soluble (1-3)-beta-glucans significantly inhibit Ca2+ influx induced by WGPs or zymosan. Soluble (1-3)-beta-glucans are likely to prevent Ca2+ influx by competitively binding to the (1-3)-beta-glucan receptors recognizing zymosan and WGPs. The smaller Ca2+ influx induced by soluble (1-3)-beta-glucans may represent only a partial activation of post-receptor signal transduction pathways necessary for inducing Ca2+ influx.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources