Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;35(4):573-9.
doi: 10.1007/s002449900418.

Sediment toxicity evaluation for hexachlorobenzene: spiked sediment tests with Leptocheirus plumulosus, Hyalella azteca, and Chironomus tentans

Affiliations

Sediment toxicity evaluation for hexachlorobenzene: spiked sediment tests with Leptocheirus plumulosus, Hyalella azteca, and Chironomus tentans

P C Fuchsman et al. Arch Environ Contam Toxicol. 1998 Nov.

Abstract

Hexachlorobenzene (HCB) is a hydrophobic organic chemical that has shown a lack of toxicity in aquatic tests at concentrations up to and exceeding the solubility limit. The equilibrium partitioning approach to deriving sediment quality benchmarks, which assumes that toxicity can be predicted based on contaminant concentrations in interstitial water, predicts that HCB will not produce direct toxicity to benthic invertebrates as a sediment contaminant. However, the potential for toxicity due to direct exposure to sediment-adsorbed HCB has not been thoroughly established. This study evaluated the survival and growth of the estuarine amphipod Leptocheirus plumulosus, the freshwater amphipod Hyalella azteca, and the midge Chironomus tentans (freshwater) following 10-day exposure to sediment spiked with a range of HCB concentrations. H. azteca was tested under both freshwater and estuarine (10 ppt salinity) conditions. No significant toxicity was observed for any test species at the highest test concentration (60 mg/kg normalized to 1% organic carbon). Minimum detectable differences were less than or equal to 20% for three of eight test endpoints. The observed results add to the available weight of evidence indicating a limited potential for HCB-related sediment toxicity to benthic invertebrates.

PubMed Disclaimer

Similar articles

Substances

LinkOut - more resources