Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;5(2-3):159-73.

GABA-immunoreactive cells of the cortical primordium contribute to distinctly fated neuronal populations

Affiliations
  • PMID: 9777633
Review

GABA-immunoreactive cells of the cortical primordium contribute to distinctly fated neuronal populations

A Fairén et al. Perspect Dev Neurobiol. 1998.

Abstract

The roles of GABA during development, as either a putative neurotransmitter or a nonsynaptic trophic factor, are being discussed intensely in recent literature. We offer an anatomical framework to better understand these possible roles in the developing cerebral cortex. During the early development of the cerebral cortex, GABA-containing cells constitute an outstanding cell population in the primordial plexiform layer, but they later distribute into at least four compartments. These include (1) Cajal-Retzius cells in layer I and (2) the subplate cells. Certain of these GABA-containing cell groups may disappear either by ceasing their expression of GABA, dilution in a growing brain volume, or cell death, possibilities that are reviewed here. The chemical tags that characterize Cajal-Retzius cells, both in the forming isocortex and Ammon's horn, are discussed. Another cell population that also belongs to the primordial plexiform layer is formed by (3) the tangentially migrating cells of the deep intermediate layer. These migrate away from the isocortical primordium to invade, and contribute cells to, the forming stratum oriens of the Ammon's horn. Since these cells cross cortical area boundaries, their tangential migration is relevant to the issue of cortical area specification during development. Finally, GABA-immunoreactive cells in the developing cortical plate are considered to be (4) the future GABAergic interneurons. A hypothetical mechanism is presented here to explain their acquisition of laminar positions, which is known to take place simultaneously, and with an identical "inside-out gradient," to the pyramidal cells generated contemporarily.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances