Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Oct;37(1):131-45.
doi: 10.1002/(sici)1097-4695(199810)37:1<131::aid-neu10>3.0.co;2-h.

Mechanisms of spontaneous activity in developing spinal networks

Affiliations
Review

Mechanisms of spontaneous activity in developing spinal networks

M J O'Donovan et al. J Neurobiol. 1998 Oct.

Abstract

Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a "fast" form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources