Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1998 Oct 20;98(16):1644-50.
doi: 10.1161/01.cir.98.16.1644.

Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue doppler imaging

Affiliations
Clinical Trial

Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue doppler imaging

S F Nagueh et al. Circulation. .

Abstract

Background: Doppler echocardiography is frequently used to predict filling pressures in normal sinus rhythm, but it is unknown whether it can be applied in sinus tachycardia, with merging of E and A velocities. Tissue Doppler imaging (TDI) can record the mitral annular velocity. The early diastolic velocity (Ea) behaves as a relative load-independent index of left ventricular relaxation, which corrects the influence of relaxation on the transmitral E velocity.

Methods and results: We evaluated 100 patients 64+/-12 years old with simultaneous Doppler and invasive hemodynamics. Mitral inflow was classified into 3 patterns: complete merging of E and A velocities (pattern A), discernible velocities with A dominance (B), or E dominance (C). The Doppler data were analyzed at the mitral valve tips for E, acceleration and deceleration times of E, and isovolumic relaxation time. In patterns B and C, the A velocity, E/A ratio, and atrial filling fraction were derived. Pulmonary venous flow velocities were also measured, and TDI was used to acquire Ea and Aa. Weak significant relations were observed between pulmonary capillary wedge pressure (PCWP) and sole parameters of mitral flow, pulmonary venous flow, and annular measurements. These were better for patterns A and C. E/Ea ratio had the strongest relation to PCWP [r=0.86, PCWP=1.55+1.47(E/Ea)], irrespective of the pattern and ejection fraction. This equation was tested prospectively in 20 patients with sinus tachycardia. A strong relation was observed between catheter and Doppler PCWP (r=0.91), with a mean difference of 0.4+/-2.8 mm Hg.

Conclusions: The ratio of transmitral E velocity to Ea can be used to estimate PCWP with reasonable accuracy in sinus tachycardia, even with complete merging of E and A velocities.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources