Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;20(4-5):321-30.
doi: 10.1159/000017327.

Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronalactivity

Affiliations
Review

Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronalactivity

N R Sibson et al. Dev Neurosci. 1998.

Abstract

The use of in vivo 13C nuclear magnetic resonance spectroscopy (NMR) has established the pathways of functional interaction between neurons and astrocytes in the mammalian brain and enabled quantitation of these fluxes. A mathematical model of glutamate, glutamine and ammonia metabolism in the brain has been developed, under the constraints of carbon and nitrogen mass balance, allowing the direct and quantitative comparison of in vivo 13C- and 15N-NMR data. Using this model and 13C-NMR data, the authors have separated the neurotransmitter cycling and detoxification components of glutamine synthesis by measuring the rate of glutamine synthesis under normal and hyperammonaemic conditions in the rat brain cortex in vivo. In addition, the simultaneous measurement of the rates of oxidative glucose metabolism and glutamate neurotransmitter cycling in the rat brain cortex has shown that over a range of EEG activity (from isoelectric up to near-resting levels) the stoichiometry between glucose metabolism and glutamate cycling is close to 1:1. Under mild anesthesia, cortical glucose oxidation coupled to glutamatergic synaptic activity accounts for over 80% of total glucose oxidation. Previously, changes in cerebral glucose metabolism have been taken to indicate alterations in functional activity. These recent in vivo results demonstrate, however, that those changes are, in fact, quantitatively coupled to the crux of functional activity, neurotransmitter release. These findings bear upon a number of hypotheses concerning the neurophysiological basis of brain functional imaging methods.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources