Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Sep 15;23(18):1946-55; discussion 1955-6.
doi: 10.1097/00007632-199809150-00005.

Biomechanical comparison of C1-C2 posterior fixations. Cable, graft, and screw combinations

Affiliations
Comparative Study

Biomechanical comparison of C1-C2 posterior fixations. Cable, graft, and screw combinations

S Naderi et al. Spine (Phila Pa 1976). .

Abstract

Study design: Four combinations of cable-graft-screw fixation at C1-C2 were compared biomechanically in vitro using nondestructive flexibility testing. Each specimen was instrumented successively using each fixation combination.

Objectives: To determine the relative amounts of movement at C1-C2 after instrumentation with various combinations of one or two transarticular screws and a posterior cable-secured graft. Also to determine the role of each component of the construct in resisting different types of loading.

Summary of background data: Spinal stiffness increases after instrumentation with two transarticular screws plus a posterior wire-graft compared with a wire-graft alone. Other C1-C2 cable-graft-screw combinations have not been tested.

Methods: Eight human cadaveric occiput-C3 specimens were loaded nondestructively with pure moments, and nonconstrained motion at C1-C2 was measured. The instrumented states tested were a C1-C2 interposition graft attached with multistranded cable; a cable-graft plus one transarticular screw; two transarticular screws alone; and a cable-graft plus two transarticular screws.

Results: The transarticular screws prevented lateral bending and axial rotation better than the posterior cable-graft. The cable-graft prevented flexion and extension better than the screws. Increasing the number of fixation points often significantly decreased the rotation and translation (paired t test; P < 0.05). Axes of rotation shifted from their normal location toward the hardware.

Conclusions: It is mechanically advantageous to include as many fixation points as possible when atlantoaxial instability is treated surgically.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms