Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;108(5):446-8.
doi: 10.1016/s0168-5597(98)00018-5.

Magnetic stimulation of the corticospinal tracts in Pelizaeus-Merzbacher disease

Affiliations

Magnetic stimulation of the corticospinal tracts in Pelizaeus-Merzbacher disease

A Nezu et al. Electroencephalogr Clin Neurophysiol. 1998 Sep.

Abstract

To evaluate conduction abnormalities of the corticospinal tracts (CSTs) in Pelizaeus-Merzbacher disease (PMD), magnetic stimulation at three levels was carried out in 3 boys with PMD aged between 9 and 12 years. They were all diagnosed as having a duplicated proteolipid protein gene. The motor cortex and cervical spinal roots were stimulated with a round coil, whereas a double cone coil was used for brain-stem stimulation. Surface electromyographic (EMG) recording was performed on the first dorsal interosseous muscles. Despite a normal EMG response to cervical stimulation, magnetic shock of the motor cortex elicited no EMG activity, even in the case with less motor symptoms. This discrepancy between the electrophysiological and clinical findings is likely due to slowing conduction, which reduces the temporal summation of multiple descending volleys magnetically elicited. A partial conduction block may also occur because of the lack of an EMG response to brain-stem stimulation. Thus, we speculated that the spastic paresis in PMD is associated with both slowing conduction and a partial conduction block in the CSTs.

PubMed Disclaimer

Similar articles

Cited by