Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 15;161(8):4016-22.

Affinity and kinetic analysis of the molecular interaction of ICAM-1 and leukocyte function-associated antigen-1

Affiliations
  • PMID: 9780171

Affinity and kinetic analysis of the molecular interaction of ICAM-1 and leukocyte function-associated antigen-1

Y Tominaga et al. J Immunol. .

Abstract

LFA-1 is a member of the beta2 integrin family, and interacts with ICAM-1, a member of the Ig superfamily containing five Ig-like domains. Interaction of LFA-1 with ICAM-1 is important in a number of cellular events, including Ag-specific T cell activation and leukocyte transendothelial migration, which are known to be typically transient and highly regulated. In this study, we have used surface plasmon resonance technology to study the ICAM-1/LFA-1 interaction at the molecular level. A soluble form of LFA-1 (sLFA-1), normally expressed as two noncovalently associated membrane-bound subunits, has been produced, and its interaction with ICAM-1 has been examined. The kinetic analysis of a monomeric sLFA-1 binding to the first two domains of ICAM-1 expressed as a chimeric IgG fusion protein (D1D2-IgG) revealed that sLFA-1 was bound to the D1D2-IgG chimera with a Kd of 500 nM and dissociated with a k(diss) of 0.1 s(-1). Monomeric membrane-bound LFA-1 purified from plasma membranes showed a similar kinetic to sLFA-1. These results suggest that the monovalent interaction between ICAM-1 and LFA-1 has a primarily high affinity and a slow dissociation rate constant as compared with other adhesion molecules, suggesting a potential mechanism for firm adhesion.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources