Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Aug;2(3):223-8.
doi: 10.1007/s007920050064.

Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology

Affiliations
Review

Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology

F Abe et al. Extremophiles. 1998 Aug.

Abstract

Hydrostatic pressure is a distinctive feature of deep-sea environments, and this thermodynamic parameter has potentially inhibitory effects on organisms adapted to living at atmospheric pressure. In the yeast Saccharomyces cerevisiae, hydrostatic pressure causes a delay in or cessation of growth. The vacuole is a large acidic organelle involved in degradation of cellular proteins or storage of ions and various metabolites. Vacuolar pH, as determined using the pH-sensitive fluorescent dye 6-carboxyfluorescein, was analyzed in a hydrostatic chamber with transparent windows under elevated hydrostatic pressure conditions. A pressure of 40-60 MPa transiently reduced the vacuolar pH by approximately 0.33. A vma3 mutant defective in vacuolar acidification showed no reduction of vacuolar pH after application of hydrostatic pressure, indicating that the transient acidification is mediated through the function of vacuolar H(+)-ATPase. The vacuolar acidification was observed only in the presence of fermentable sugars, and never observed in the presence of ethanol, glycerol, or 3-o-methyl-glucose as the carbon source. Analysis of a glycolysis-defective mutant suggested that glycolysis or CO2 production is involved in the pressure-induced acidification. Hydration and ionization of CO2 is facilitated by elevated hydrostatic pressure because a negative volume change (delta V < 0) accompanies the chemical reaction. Moreover the glucose-induced cytoplasmic alkalization is inhibited by elevated hydrostatic pressure, probably because of inhibition of the plasma membrane H(+)-ATPase. Therefore, the cytoplasm tends to become acidic under elevated hydrostatic pressure conditions, and this could be crucial for cell survival. To maintain a favorable cytoplasmic pH, the yeast vacuoles may serve as proton sequestrants under hydrostatic pressure. We are investigating the physiological effects of hydrostatic pressure in the course of research in a new experimental field, baro-(piezo-) physiology.

PubMed Disclaimer

LinkOut - more resources