Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 30;273(44):29150-5.
doi: 10.1074/jbc.273.44.29150.

Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule

Affiliations
Free article

Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule

P J Schultheis et al. J Biol Chem. .
Free article

Abstract

Mutations in the gene encoding the thiazide-sensitive Na+-Cl- cotransporter (NCC) of the distal convoluted tubule cause Gitelman's syndrome, an inherited hypokalemic alkalosis with hypomagnesemia and hypocalciuria. These metabolic abnormalities are secondary to the deficit in NaCl reabsorption, but the underlying mechanisms are unclear. To gain a better understanding of the role of NCC in sodium and fluid volume homeostasis and in the pathogenesis of Gitelman's syndrome, we used gene targeting to prepare an NCC-deficient mouse. Null mutant (Ncc-/-) mice appear healthy and are normal with respect to acid-base balance, plasma electrolyte concentrations, serum aldosterone levels, and blood pressure. Ncc-/- mice retain Na+ as well as wild-type mice when fed a Na+-depleted diet; however, after 2 weeks of Na+ depletion the mean arterial blood pressure of Ncc-/- mice was significantly lower than that of wild-type mice. In addition, Ncc-/- mice exhibited increased renin mRNA levels in kidney, hypomagnesemia and hypocalciuria, and morphological changes in the distal convoluted tubule. These data indicate that the loss of NCC activity in the mouse causes only subtle perturbations of sodium and fluid volume homeostasis, but renal handling of Mg2+ and Ca2+ are altered, as observed in Gitelman's syndrome.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources