Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 1;53(1):1-11.
doi: 10.1006/geno.1998.5465.

GPC4, the gene for human K-glypican, flanks GPC3 on xq26: deletion of the GPC3-GPC4 gene cluster in one family with Simpson-Golabi-Behmel syndrome

Affiliations

GPC4, the gene for human K-glypican, flanks GPC3 on xq26: deletion of the GPC3-GPC4 gene cluster in one family with Simpson-Golabi-Behmel syndrome

M Veugelers et al. Genomics. .

Abstract

The glypicans constitute a growing family of cell surface heparan sulfate proteoglycans that may play a role in the control of cell division and growth regulation. Recently, deletions and translocations involving GPC3 (the gene for glypican-3, localized on Xq26) have been identified in patients with Simpson-Golabi-Behmel syndrome (SGBS). This X-linked syndrome is characterized by pre- and postnatal overgrowth, visceral and skeletal abnormalities, and a high risk for the development of embryonal tumors, mostly Wilms tumor and neuroblastoma. In the present report we show that the gene for human K-glypican/glypican-4 (GPC4) also maps to Xq26, centromeric to GPC3. The glypican-4 protein is encoded by nine exons. Establishment of a BAC/PAC contig physically linking GPC4 and GPC3 indicates that these two genes are arranged in a tandem array, the 5' end of GPC4 flanking the 3' end of GPC3. Unlike the glypican-3 message, the glypican-4 message is nearly ubiquitous. Analysis of DNA samples from eight patients with diagnosis of SGBS identified one individual with a deletion that involves the entire GPC4 gene and the last two exons of GPC3. The tight clustering of GPC3 and GPC4, with deletions that occasionally affect both genes, may be relevant for explaining the variability of the SGBS phenotype.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources