Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 26;809(1):115-26.
doi: 10.1016/s0006-8993(98)00849-x.

High potassium enhances secretion of neurotrophic factors from cultured astrocytes

Affiliations

High potassium enhances secretion of neurotrophic factors from cultured astrocytes

Y Abiru et al. Brain Res. .

Abstract

Elevation of extracellular potassium concentration ([K+]o) in the central nervous system (CNS), which is observed such after physiological stimuli and during ischemia, is known to be regulated by astrocytes. We suspected that in response to increased [K+]o, astrocytes might secrete some neurotrophic factor(s) to promote the survival of active and/or ischemically damaged neurons. In the present study, we examined neurotrophic activity contained in HK-ACM, i.e., astrocyte-conditioned medium (ACM) obtained after culturing astrocytes in 40 mM potassium-containing medium (HK medium). Addition of HK-ACM to basal forebrain cultures from postnatal 2-week-old (P2w) rats increased both the choline acetyltransferase (ChAT) activity (4.40-fold) and the number of ChAT-positive neurons (2.01-fold) as compared with non-conditioned HK medium. On the other hand, the neurotrophic effects of LK-ACM, i.e., ACM collected after culturing astrocytes in 4 mM potassium-containing medium (LK medium), were much weaker (2.85- and 1.41-fold for ChAT activity and number of ChAT-positive neurons, respectively) than those of HK-ACM. The neurotrophic effects of ACMs increased in a manner dependent on potassium concentration and on astrocyte culture time. Addition of an antibody against nerve growth factor (NGF) neutralized the neurotrophic effects of HK- and LK-ACMs. Direct quantification of NGF protein in ACMs by the two-site ELISA method demonstrated that a high concentration of potassium enhanced NGF secretion from cultured astrocytes. These results suggested that astrocytes secrete NGF in response to [K+]o elevation in the CNS.

PubMed Disclaimer

MeSH terms

LinkOut - more resources