Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;96(4):379-87.
doi: 10.1007/s004010050908.

Histopathological and ultrastructural features of feline hereditary cerebellar cortical atrophy: a novel animal model of human spinocerebellar degeneration

Affiliations

Histopathological and ultrastructural features of feline hereditary cerebellar cortical atrophy: a novel animal model of human spinocerebellar degeneration

M M Aye et al. Acta Neuropathol. 1998 Oct.

Abstract

Human spinocerebellar degeneration is one of the intractable diseases. We studied the detailed neuropathology of cats with hereditary cerebellar degeneration obtained from the experimental breeding. The findings included almost total loss of Purkinje cells with an increase in Bergmann's glia in the cerebellar hemisphere, preservation of some Purkinje cells in the vermis and moderate neuronal depletion of the olive nucleus. Cerebellar and pontine nuclei were normal. The cerebrum and spinal cord as well as the peripheral nervous system appeared normal. Electron microscopic examination revealed swelling of the distal dendrites of Purkinje cells in the less-affected nodule of the vermis, and clusters of presynaptic boutons without any synaptic contact in the severely affected folia where Purkinje cell bodies and dendrites disappeared. Prolonged existence of presynapses in the molecular and Purkinje cell layers was confirmed by positive immunoreactivity to anti-synaptophysin. Quantitative analysis using electron microscopy demonstrated an apparent increase in the density and mean size of presynapses in the molecular layer of the severely affected folia. These findings indicate that degeneration of Purkinje cells started at the most distal part of the dendrite in this animal model of cerebellar degeneration, and that presynapses, axon terminals of the granular cells and basket cells can exist for a long time even after complete degeneration of the Purkinje cells. Further investigation of this novel animal model may promote a better understanding of pathogenesis of human hereditary cerebellar degeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources